Reg. No. :						
neg. No. :	Feb. 1			-7.0	40	

Question Paper Code: 41206

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Fifth Semester

Electronics and Communication Engineering

EC 1302 — DIGITAL SIGNAL PROCESSING

(Regulation 2008)

Time: Three hours Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. State the condition for BIBO stability.
- 2. What are the different types of signal representation?
- 3. Find the z-transform of the sequence $x(n) = \{-1, 2, -3, 4, -5\}$
- 4. What is the relationship between z-transform and DT Fourier transform?
- 5. Determine the circular convolution of the following sequence $x(n) = \{1,-1,1\}$ and $h(n) = \{1,-2\}$.
- 6. What is meant by 'in place' computation of FFT?
- 7. Draw the frequency response of N point Hanning window.
- 8. Mention any two properties of Butterworth and Chebyshev filters.
- 9. List the functional blocks present in TMS320C54x.
- 10. What do you mean by quantization step size?

PART B - (5 × 16 = 80 marks)

- 11. (a) (i) A LTI system with impulse response h(n) = u(n) u(n) u(n-6) is excited by an input x(n) = [u(n-1) u(n-5)]. Determine the output of the system.
 - (ii) Examine whether the following system are linear, time-invariant, causal and stable or not
 - (1) y(n) = x(n/2+2)

$$(2) y(n) = x(n) \cos \omega_0 n. (8)$$

Or

- (b) (i) Determine the convolution and correlation of the sequence $x(n) = \{1, -1, 2, -3, 3\}$ and $h(n) = \{0.5, 1, 1, 2, 2\}$. (8)
 - (ii) For the analog signal $x(t) = 3\cos 2000\pi t + 5\sin 6000\pi t + 10\cos 12000\pi t$, find the following (1) Nyquist sampling rate (2) discrete time signal if the analog signal x(t) sampled using $F_s = 5000$ samples/sec. (8)
- 12. (a) (i) Determine the final value of the following Z transform.
 - (1) $\frac{(2z+1)(z-2)}{z(z-1)}$

(2)
$$\frac{z+1}{2(z^2+1)(z-0.9)}.$$
 (8)

- (ii) Find the inverse Z transform of $X(z) = \frac{z}{3z^2 4z + 1}$ for the ROC
 - (1) |z| < 1/3

(2)
$$1/3 < |Z| < 1$$
.

Or

- (b) (i) Determine the magnitude of phase response of the system whose difference equation $y(n) \frac{1}{4}y(n-1) = x(n) x(n-1) + 2x(n-2)$. (8)
 - (ii) Determine the stability of the system y(n) 1/4 y(n-1) + 1/4 y(n-2) 1/16 y(n-3) = 2x(n) + 3x(n-1). (8)

			네 이 바람이 내려왔다고 하시다면 하는 때를 하고 내려왔다.	
13. (a)	(a)	(i)	State and prove the following properties of DFT	
			(1) Circular convolution	
			(2) Parseval's relation. (8	3)
		(ii)	Compute the 8 point DFT of the sequence	
			$x(n) = \{0.5, -0.5, 0.5, -0.5, 0, 0, 0, 0, 0\}$ using radix-2 DIF FF' algorithm. (8)	
			Or	
	(b)	(i)	Draw the butterfly diagram of radix-2 DIT FFT algorithm. Assum $N=8$.	
		(ii)	Find the circular convolution of the following two sequences using matrix method and concentric circle method.	g
			$x_1(n) = \{2, 3, -1, 2\}; x_2(n) = \{-1, 2, -1, 2\}.$ (8)	3)
14.	(a)	(i)	Obtain the direct form II, cascade and parallel realization for the following systems $y(n)=0.1x(n-1)+0.2y(n-2)+3x(n)+3.6x(n-1)-0.6x(n-2)$.	
		(ii)	Discuss the limitation of designing an IIR filter using impuls invariant method.	
			Or	
	(b)	4	ermine $H(Z)$ for a Butterworth filter satisfying the following ifications.	g
		0.6≤	$\leq H(e^{j\omega}) \leq 1$, for $0 \leq \omega \leq \pi/4$	
			$ e^{j\omega}\rangle \leq 0.2$, for $\pi/2 \leq \omega \leq \pi$.	
15.	(a)		w the TMS320C54X multiplier and adder functional diagram explain function of each block.	n
			Or.	
	(b)	(i)	Discuss the different addressing modes of the TMS320C54X. (8	3)
		(ii)	Describe the effects of quantization error in the design of FIR filter.	